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qg—shifted factorials
e The g—shifted factorials are defined by

n

(a3;9)0o:=1, (a5 q)n:= H(l — aqk_l), n=12,---
k=1

e multiple g—shifted factorials is defined by

k

(a1, a2, -+, ai @)n = | [ (a5 @)n- (1)

Jj=1

e Without loss of generality, we may assume that |g| < 1
henceforth. Thus, the infinite product

(a1, a2, -+, a8k Qoo = nﬂrpoo(al, az, -,k q)n

always converge.
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L. J. Rogers' generating functions |

e In a well-known paper of Askey & Ismail in 1983, they gave
the weight function of continuous q— Hermite polynomials
generated by Rogers in 1894:

o~ Hi( qu
f(x) = u th ) < 1,
= e = a1
where
n - .
Hn(x|q) = (g: 9)n e/(n=2k)0 " x — cos .

— (a0 )k (9 @)n—«

e The poles of f(x) are enumerated by the infinite sequence

1
Xy 1= §(ql/2+” +q Ym0, neNu{0}.
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L. J. Rogers’ generating functions Il

e The same paper also gave a weight of continuous
q—ultraspherical polynomials generated by Rogers:

i0 i0
H(x):—(ﬂe t, fe 7t 9)oc ZC ; Blq)t", x=cosb,

(elet e 19t q
where

. = (85 @)k(Bs @)n—k
Gl Bla) = — (a: 9)x(q: @)k

cos(n — 2k)6

The pole-sequence is as on last page while the zero-sequence
of the H(x) is given by:

Xn

(Btq"+q"/(Bt)) 0, nc NU{0}. (2)

l\)\b—*
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Conventional view
e They are related to the proof of Rogers-Ramanujan identities
by Rogers
e It is obvious that the above generating functions have
infinitely many zeros/poles in C of the forms:

Xp = %(z‘9 q"+q "/z), neNuU{0}.
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Conventional view

e They are related to the proof of Rogers-Ramanujan identities
by Rogers

e It is obvious that the above generating functions have
infinitely many zeros/poles in C of the forms:

Xp = %(za q"+q "/z), neNuU{0}.

e We shall argue that the two generating functions, etc. are
zero/pole scarce when interpreted appropriately.



Motivation

Conventional view

They are related to the proof of Rogers-Ramanujan identities
by Rogers

It is obvious that the above generating functions have
infinitely many zeros/poles in C of the forms:

Xp = %(za q"+q "/z), neNuU{0}.

We shall argue that the two generating functions, etc. are
zero/pole scarce when interpreted appropriately.

Need a difference operator for which these "zeros/poles”
belong.

Then we built a complex function theory around this operator
for which the zero/poles sequences considered can be
interpreted suitably.

My investigation has its roots in Function Theory and
Integrable Systems.
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Little Picard's Theorem

e Theorem (Picard showed in 1879)

An entire function f assumes every value in C, except perhaps for
at most one exception
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e Theorem (Picard showed in 1879)

An entire function f assumes every value in C, except perhaps for
at most one exception

(E.g. f(x) =€)
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Little Picard's Theorem

e Theorem (Picard showed in 1879)

An entire function f assumes every value in C, except perhaps for
at most one exception

(E.g. f(x) =€)
e Method: Elliptic modular functions and Liouville’s theorem.

e Thus for an non-constant meromorphic function f
f(C) = C\ {at most two points}.

That is, a meromorphic function that omits three points must
reduce to a constant.
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Little Picard's Theorem

e Theorem (Picard showed in 1879)

An entire function f assumes every value in C, except perhaps for
at most one exception

(E.g. f(x) =€)
e Method: Elliptic modular functions and Liouville’s theorem.

e Thus for an non-constant meromorphic function f
f(C) = C\ {at most two points}.

That is, a meromorphic function that omits three points must
reduce to a constant.

e We say points in C that are missed or assumed only finitely
many times by f a Picard exceptional values.
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Nevanlinna Characteristic fn
e Nevanlinna characteristics

T(r,f):=m(r,f)+ N(r,f)

1 [ : " n(t,f)
= — log™ |f(re'®)|d0O / * dt.
5 | tog" Irtre a0+ [

= (Proximity fn) 4 (Integrated counting fn)

Summary
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Nevanlinna Characteristic fn
Nevanlinna characteristics

T(r,f):=m(r,f)+ N(r,f)

1 [ : " n(t,f)
= — log™ |f(re'®)|d0O / * dt.
5 | tog" Irtre a0+ [

= (Proximity fn) 4 (Integrated counting fn)

n(r,f) :=# {poles of f(z)in |z| < r}, log™ & := max{0, log&}.

Abbreviation: for arbitrary a € C
1
N =N(r, ——
(r,a) = N(r, )

e T(r, f)is a convex function of logr, T(r, f) 1 oo as r 1 oc.
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Examples

e Let ['(z) denote the standard Euler-Gamma function

1/1(z —zeVH<1+ >‘Z/”

where v = 0.5772.... Then we have
T(r,T)~rlogr, ol =1,

Summary
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Examples

e Let ['(z) denote the standard Euler-Gamma function

1/1(z —ze7H<1+ )‘Z/”

where v = 0.5772.... Then we have
T(r,T)~rlogr, ol =1,

e Let f be a meromorphic function, then f is transcendental if

and only if

Summary
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Nevanlinna Theory |
e Key inequality I: Given a1, a» € C,
T(r, f) < N(r, f)+ N(r, a1) + N(r, ap) — Ni(r, ) (3)
+ O(rlog T(r, f)), r— oo (&E)
where

Ni(r, f) = N(r, 1/f")+2N(r, f) — N(r, ).
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Nevanlinna Theory |
e Key inequality I: Given a1, a» € C,
T(r, f) < N(r, f)+ N(r, a1) + N(r, ap) — Ni(r, ) (3)
+ O(rlog T(r, f)), r— oo (&E)
where

Ni(r, f) = N(r, 1/f")+2N(r, f) — N(r, ).

e 7 is a pole of f:
contrib. of N(r, f) — Ny(r) = N(r, ) —2N(r, f) + N(r, f')
= —N(r, f)+ N(r, f)=1;
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Nevanlinna Theory |
e Key inequality I: Given a1, a» € C,
T(r, f) < N(r, f)+ N(r, a1) + N(r, ap) — Ni(r, ) (3)
+ O(rlog T(r, f)), r— oo (&E)
where
Ni(r, f) = N(r, 1/f") + 2N(r, f) — N(r, ).

e 7 is a pole of f:
contrib. of N(r, f) — Ny(r) = N(r, ) —2N(r, f) + N(r, f')
= —N(r, f)+ N(r, f)=1;

e 7 is a aj-point (j = 1, 2) of f:
contrib. of N(r, aj) — Ni(r) = N(r, aj) — N(r, 1/f)
= N(r, aj) = N(r, 1/(f - 3))")=1;
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Nevanlinna Theory Il

e Key inequality Il: Given a1, a € C,

T(r, f) < N(r, f)+ N(r, a1) + N(r, a2) (4)
+ O(rlog T(r, f)), r— oo (¢ E)

where

N(r, f) = counts each pole with multiplicity 1,

N(r, aj) = counts each aj-point with multiplicity 1



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel Summary

Nevanlinna Theory Il
e Key inequality Il: Given a1, a € C,
T(r, f) < N(r, f)+ N(r, a1) + N(r, a2) (4)
+ O(rlog T(r, f)), r— oo (¢ E)

where

N(r, f) = counts each pole with multiplicity 1,

N(r, aj) = counts each aj-point with multiplicity 1

e Multiply ——~ and add 3 on both sides:

T(r,f)
(T ) () (e ) ot <31

r— oo (¢ E)
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Nevanlinna Theory Il

(TR (TR (- T ) e <

r— oo (¢ E)

e If f misses 0o, a1, ao, then the above becomes
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Nevanlinna Theory Il

(TR (TR (- T ) e <

r— oo (¢ E)

e If f misses 0o, a1, ao, then the above becomes
34+0(1)~ (1—-0(1)) + (1—o(1)) + (1 —o(1)) < 2.

A contradiction and thus proves the Little Picard Theorem.

e Nevanlinna deficiency at a:

: N(r, a)
< =1-1 <1
0<©(a) |£n_>sotép T(r, f) =
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Difference Variations

e There are many generalisations to higher dimensional spaces
C" where Picard values are replaced by appropriate varieties.
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Difference Variations

e There are many generalisations to higher dimensional spaces
C" where Picard values are replaced by appropriate varieties.

e We re-interpret the followings:
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Difference Variations
e There are many generalisations to higher dimensional spaces
C" where Picard values are replaced by appropriate varieties.
e We re-interpret the followings:
(i) constants belong to ker (%)
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Difference Variations
e There are many generalisations to higher dimensional spaces
C" where Picard values are replaced by appropriate varieties.
e We re-interpret the followings:
(i) constants belong to ker (%)

(ii) f has three Picard values a, b, ¢ means

flia)=0, flb)=0, f(c)=0.
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Difference Variations
e There are many generalisations to higher dimensional spaces
C" where Picard values are replaced by appropriate varieties.
e We re-interpret the followings:
(i) constants belong to ker (%)

(ii) f has three Picard values a, b, ¢ means
fla@)=0, Yb)=0, fc)=0.

—

(I) functions belong to ker of a difference operator

(1)
fa) #£0, FYb)#0, fc)#0.

but each lies on a specific sequence.
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Difference Variations
There are many generalisations to higher dimensional spaces
C"™ where Picard values are replaced by appropriate varieties.
We re-interpret the followings:
constants belong to ker ()

f has three Picard values a, b, ¢ means
fa)=0, FYb)=0, fc)=0.

—

functions belong to ker of a difference operator

fia)#0, Fib)#0, fi(c)#0.
but each lies on a specific sequence.

Halburd-Korhonen (2006), Chiang-Feng (2008, 2018),
Cheng-Chiang (2017), Chiang-Luo (2017).
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Askey-Wilson difference operator

o let xe C

1 1 1, ;
x =cosf = §(Z+ ;) = E(e’g +e ), z=e
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Askey-Wilson difference operator

o let xeC
_ _1 v L1 e —io _ 0
x =cosf = 2(erZ)— 2(e +e "), z=e".
o The AW-divided difference operator (1985) is defined by

f(x) - (%)

(Dgf) (x) i= == gl £1 (5)

where
q1/2z—|— qf1/2271 - q71/2z_~_ q1/2z’1

2 ’ ' 2

A

In fact the denominator above can be rewritten as

("2 — q=Y/?)isin 6.

If £ is differentiable at x then (Dg4f)(x) — f'(x) as g — 1.
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Logarithmic Derivative estimates

e Let P(x) be a polynomial. Then

27 p! i
/ Iog+‘(i.9)‘d9—>0, r— oo.
0 P(re'?)
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Logarithmic Derivative estimates

e Let P(x) be a polynomial. Then

27 p! i0
/ log™ ‘ (rele ) ‘ dg — 0, r— oo.
0 P(re'?)

e The crucial tool behind the Fundamental inequalities is that
the above estimate continue to hold in the following sense:
f'(re'?)

m(r ) =5 Lo e
= O(Iog T(r, f))

= o(T(r, f))

’dﬁ

for r — oo (r € E).

e The estimate is called logarithmic derivative lemma
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qg—Logarithmic Difference Lemma
e Recall that f has finite order o if Ve > 0,
T(r, f)=0(r""%), r— +cc.

If f has zero-order, then we say f has finite log-order 044
when Ve > 0,

T(r, f) = O((log r)7="), r— +o0.

Summary
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qg—Logarithmic Difference Lemma
e Recall that f has finite order o if Ve > 0,
T(r, f)=0(r""®), r— +oo.

If f has zero-order, then we say f has finite log-order 044
when Ve > 0,

T(r, f) = O((log r)7="), r— +o0.

e Theorem (C. and Feng (2018) logarithmic difference lemma)

Let f(x) be a meromorphic function s.t. Dy # 0 and of log-order
Olog < 00 and where |q| # 1. Then we have Ve > 0,

m(r, (D;,(fj)()d) = O((Iog r)"'°g_1+€) (6)

holds for all |x| = r > 0.
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AW-Nevanlinna Theory |

e Key inequality I': Given aj, a» € C. The log-difference lemma
above leads to

T(r, ) < N(r, f)+ N(r, a1) + N(r, az) — Naw(r, ) (7)
+ O((Iog r)""’g_1+5>7 r— oo
where

Naw(r, f) = N(r, 1/Dqf) +2N(r, f) — N(r, Dqf).
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AW-Nevanlinna Theory |

e Key inequality I': Given aj, a» € C. The log-difference lemma
above leads to

T(r, ) < N(r, f)+ N(r, a1) + N(r, az) — Naw(r, ) (7)
+ O((Iog r)""’g_1+5>7 r— oo
where

Naw(r, f) = N(r, 1/Dgf) +2N(r, ) — N(r, Dyf).

e The main task here is to find an analogue Nay (r, f) for

N(r, f) for the AW-operator D,,.



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel

AW-Nevanlinna Theory Il

e Our aim is to find a correct Naw (r, f) so that

T(r, f) < Naw (r, f) + Naw (r, a1) + Naw (r, a2)
+ O((Iog r)""’fl“), r — +o0,

where the AW-integrated counting fns are defined by

Summary
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AW-Nevanlinna Theory Il

e Our aim is to find a correct Naw (r, f) so that

T(r, f) < Naw (r, f) + Naw (r, a1) + Naw (r, a2)
+ O((Iog r)""’fl“), r — +o0,

where the AW-integrated counting fns are defined by

~ ~ 1 "h t
NAW (r7 3) = NAW <r7 ) - / nAW( : a) dta
f—a 0 t

and

Naw (r, 00) = Naw (r, f):/ Baw (& F) 4.

O t

The above are the analogues for the N(r, a) and N(r, f)
respectively.

Summary
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AW-type a—points counting functions |

We define the Askey-Wilson-type counting function of f

aw (1, 3) = 7 :
naw \r, ) = naw AR I

- > (h~ k)

Ix|<r,
h= multiplicity of f(x)=a,
k= multiplicity of Dgf(X)=0

over all x in {|x| < r} where h = h(x) is the multiplicity of the
a—points of f(x), and k = k(x) is the multiplicity of the 0—point
of Dyf (%), respectively.
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AW-type pole counting functions Il

Similarly, we define

fiaw (r, 00) = fiaw (r, % = 0)

x|<r,
h= multiplicity of 1/f(x)=0,
k= multiplicity of Dg(1/f)(X)=0

over all x in {|x| < r}, where h = h(x) is the multiplicity of the
zeros of 1/f(x), and k = k(x) is the multiplicity of zeros of
Dy(1/f) at the X.
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AW-Nevanlinna Deficiency

e We have

—_— NAw(r, A)
< =1—lim —/———<1
0= Ouwla) =1 lim =70y <
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AW-Nevanlinna Deficiency

e We have

= Naw(r, A)
< =1—-lim —/———— <1
0 < Gaw(a) oo T(r, f) =
We call a complex number a € C an
o AW—Picard value if fiaw (r, a) = O(1) (equivalent to
Naw (r, a) = O(logr)),
o AW—Nevanlinna deficient value if © aw(a) > 0.

Summary
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AW-Nevanlinna Deficiency

We have

OgeAw(a)l—rﬂrgo,\ng
We call a complex number a € C an
o AW—Picard value if fiaw (r, a) = O(1) (equivalent to
Naw (r, a) = O(log r)),
AW —Nevanlinna deficient value if © aw(a) > 0.
If ais a AW —Picard value, then ©,w(A) =1, and

(z2q"+q "/za), neNU{0}.

N —

Xp 1=
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AW-Picard theorem
Theorem (C. & Feng (2018))

Let f be a meromorphic function with logarithmic order o, < o0,
and that f has three distinct AW — Picard exceptional values. Then
f is an AW —constant.

Proof.

We deduce (skipping details) that

Summary

3 = 0Oaw(o0) + Oawl(a1) + Oawl(a2) < 2.

W] o1 | ' O
N
TV

/. .\\.\1 5

Figure: The left-side contains the pre-images of the right-side



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel Summary

Meromorphic fn with Extremal Deficiency

e Recall the weight of continuous q—ultraspherical polynomials
discovered by Rogers:

i0 6
H(x):f(ﬁetﬂe LS ZCxﬁ\q x = cosf,

(elﬁt e 19t q

e The zero and pole sequences are

5o = (Bt + T (BY). xn = (a2 4 g7

N

n € NU {0} respectively.

Oaw(0) =1, Oaw(co)=1.

Thus ©aw(0) + ©aw(o0) = 2 which is the maximal
deficiency sum without the H(z) being in the kernel of D,,.
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General Main theorem

e Theorem (C. & Feng (2018))

Suppose that f(z) is a non-constant meromorphic function of
log-order o1,g < c0. Let q be a complex number such that |q| # 1,
Dyf #0, and let a1, a>,--- , ap, where p > 2, be mutually distinct
elements in C, then we have for r < oo and for every £ > 0

(p—1+0(1))T(r, f) < Naw (r, f)—i—z Naw (r, a,)+Siog(r, € f)

v=1
_ (8)
where Siog(r, €; f) = O((log r)7e =€), Naw (r, f) and
Naw (r, a,) are the AW — counting functions.
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General Main theorem

e Theorem (C. & Feng (2018))

Suppose that f(z) is a non-constant meromorphic function of
log-order o1,g < c0. Let q be a complex number such that |q| # 1,
Dyf #0, and let a1, a>,--- , ap, where p > 2, be mutually distinct
elements in C, then we have for r < oo and for every £ > 0

p
(p—1+0(1)) T(r, f) < Naw (r, f)—i—z Naw (r, av)+Siog(r, €; f)
v=1
_ (8)
where Siog(r, €; f) = O((Iog r)"'og*lﬁ), Naw (r, f) and
Naw (r, a,) are the AW — counting functions.
We deduce

Z (6(a) + Oaw(a)) < Z Oaw(a) <2,

2eC 2eC
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Rational AW-Picard Deficienies

f;(X) _ (eié', e—iB; q)oo(q2ei07 q2e—i6'; q3)oo, eAW(O) _ 1/2

fg(X) _ (ei07 efi0; q4)oo(qei97 qefie; q4)oo

(¢°e”, P g"),  ©aw(0) =2/3
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Rational AW-Picard Deficienies

fi(x) = (e”, e q)oo(d?e”, ¢’ ¢*)os, ©aw(0) = 1/2.

°
f%(X) _ (ei07 efie; q4)oo(qei97 qefiQ; q4)oo
(g%, ¢?e™; q)os,  ©aw(0) =2/3
°
n—1 . .
f%(X) _ H(qzke:e’ qZke—la; q2n—1)oo’ @AW(O) _ 1/n‘
k=0
°
n—1

foa(x) = [[(a%€”, g™ @™ oo, ©aw(0) = (n—1)/n,
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The Askey-Wilson “Constants”

e This terminology is due to Mourad Ismal.

e Let f lies in the kernel of the AW-operator. Then there exists
a non-negative integer k and complex numbers ay, - - - , 3
and by, -+, bg, C # 0 such that

k —i i —i0.
CH aj 9; )oo (q/aje.gv q/aje "9' Q)oo
i ( 6’9 be " q)oo (a/bje, q/bje™"; q)os
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Kernel identities

Theorem (C.& Feng (2018))

Given positive integer k and complex numbers

aj, G;,j = 1,2,--- k, there exist complex numbers b and C such
that
k . . . .
> Gi(aje”, a6 q)c(q/aje”, q/aje™"; q)nc
j=1

= C(beiz, be™7Z: q)oo(q/beiz, q/be_iz; q)oo-
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Theta functions identities

Ua(2/2) = (¢°, ¢*) (g%, g™ )

93(2/2) = (6% ¢*) (—q €%, —qe%; ¢%)so.
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Theta functions identities

Ua(2/2) = (¢°, ¢*) (g%, g™ )

93(2/2) = (6% ¢*) (—q €%, —qe%; ¢%)so.

GLUi(2) + G ¥3(2) = CV3(2)

Summary
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Theta functions identities

[ ]
Va(2/2) = (¢°, ¢°) (967, €77, ¢*)oc
[ ]
93(2/2) = (0% %) (—q €7, —qe %} ¢°)cc

[ ]

C193(2) + G Y3(z) = CY3(z2)
[ ]

V3(2) 07 4 93(2) 93 = 9¥3(z) ¥3.
[ ]

U3(z + y) ¥3(z — y) 95 = 95(y) ¥5(2) + 9i(y) ¥i(2)
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An Example

e Consider the Jacobian (elliptic) theta functions:

f(x) = ©4(2cosb, q) =2 Z(—l)"q"Z cos(2n6)

—2i6

= (q% qe®, ge " ) .,

and

g(x) = ©3(cos26, q) =2 Z q” cos(2nf)
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An Example

e Consider the Jacobian (elliptic) theta functions:
f(x) = ©4(2cosb, q) =2 Z(—l)"q"2 cos(2n6)

= (¢% qe*’, qe 7" q%)
and

g(x) = ©3(cos 20, q) = 22 q” cos(2nf)

—00

e Then the function
F(x)= ——=
(x) 2

has {0, co} to be Askey-Wilson-Picard exceptional
values, and there are no other zeros and poles of F.
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Summary

We have reviewed on recent development on function theory
related to difference operators

Askey-Wilson type Nevanlinna theory

Interpreted the infinite Zeros/poles sequences that lie on
particular orbit have © oy (-) = 1 so they are like missing in
the Nevanlinna sense,

Future directions may include:

1.

k0N

Value distribution results vs special function identities
Applications to difference equations

Missing piece: Laurent series w. r. t. different bases?
Relations with interpolation theory

Any modular proof?
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