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q−shifted factorials

• The q−shifted factorials are defined by

(a; q)0 := 1; (a; q)n :=
n∏

k=1

(1− aqk−1), n = 1, 2, · · ·

• multiple q−shifted factorials is defined by

(a1, a2, · · · , ak ; q)n :=
k∏

j=1

(aj ; q)n. (1)

• Without loss of generality, we may assume that |q| < 1
henceforth. Thus, the infinite product

(a1, a2, · · · , ak ; q)∞ = lim
n→+∞

(a1, a2, · · · , ak ; q)n

always converge.
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L. J. Rogers’ generating functions I

• In a well-known paper of Askey & Ismail in 1983, they gave
the weight function of continuous q−Hermite polynomials
generated by Rogers in 1894:

f (x) =
1

(te iθ, te−iθ; q)∞
=
∞∑
k=0

Hk(x | q)

(q; q)k
tk , |t| < 1,

where

Hn(x | q) =
n∑

k=0

(q; q)n
(q; q)k (q; q)n−k

e i(n−2k)θ, x = cos θ.

• The poles of f (x) are enumerated by the infinite sequence

xn :=
1

2

(
q1/2+n + q−1/2−n) 7−→ 0, n ∈ N ∪ {0}.
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L. J. Rogers’ generating functions II

• The same paper also gave a weight of continuous
q−ultraspherical polynomials generated by Rogers:

H(x) :=
(βe iθt, βe−iθt; q)∞

(e iθt, e−iθt; q)∞
=
∞∑
n=0

Cn(x ; β | q) tn, x = cos θ,

where

Cn(x ; β | q) =
n∑

k=0

(β; q)k(β; q)n−k
(q; q)k(q; q)n−k

cos(n − 2k)θ

The pole-sequence is as on last page while the zero-sequence
of the H(x) is given by:

xn :=
1

2

(
βt qn + q−n/(βt)

)
7−→ 0, n ∈ N ∪ {0}. (2)
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Conventional view

• They are related to the proof of Rogers-Ramanujan identities
by Rogers

• It is obvious that the above generating functions have
infinitely many zeros/poles in C of the forms:

xn :=
1

2

(
za q

n + q−n/za
)
, n ∈ N ∪ {0}.

• We shall argue that the two generating functions, etc. are
zero/pole scarce when interpreted appropriately.

• Need a difference operator for which these ”zeros/poles”
belong.

• Then we built a complex function theory around this operator
for which the zero/poles sequences considered can be
interpreted suitably.

• My investigation has its roots in Function Theory and
Integrable Systems.
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Little Picard’s Theorem

• Theorem (Picard showed in 1879)

An entire function f assumes every value in C, except perhaps for
at most one exception

(E.g. f (x) = ex .)

• Method: Elliptic modular functions and Liouville’s theorem.

• Thus for an non-constant meromorphic function f

f (C) = Ĉ \ {at most two points}.

That is, a meromorphic function that omits three points must
reduce to a constant.

• We say points in Ĉ that are missed or assumed only finitely
many times by f a Picard exceptional values.



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel Summary

Little Picard’s Theorem

• Theorem (Picard showed in 1879)

An entire function f assumes every value in C, except perhaps for
at most one exception

(E.g. f (x) = ex .)

• Method: Elliptic modular functions and Liouville’s theorem.

• Thus for an non-constant meromorphic function f

f (C) = Ĉ \ {at most two points}.

That is, a meromorphic function that omits three points must
reduce to a constant.
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f (C) = Ĉ \ {at most two points}.

That is, a meromorphic function that omits three points must
reduce to a constant.
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Nevanlinna Characteristic fn
• Nevanlinna characteristics

T (r , f ) : = m(r , f ) + N(r , f )

=
1

2π

∫ 2π

0
log+ |f (re iθ)|dθ +

∫ r

0

n(t, f )

t
dt.

= (Proximity fn) + (Integrated counting fn)

•

n(r , f ) := #
{
poles of f (z) in |z | < r

}
, log+ ξ := max{0, log ξ}.

• Abbreviation: for arbitrary a ∈ C

N(r , a) = N
(
r ,

1

f − a

)
• T (r , f ) is a convex function of log r , T (r , f ) ↑ ∞ as r ↑ ∞.
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Examples

•
T (r , ez) ∼ r , σ(ez) = 1

• Let Γ(z) denote the standard Euler-Gamma function

1/Γ(z) = zeγ
+∞∏
n=1

(
1 +

z

n

)
e−z/n,

where γ = 0.5772 . . . . Then we have

T (r , Γ) ∼ r log r , σ(Γ) = 1,

• Let f be a meromorphic function, then f is transcendental if
and only if

lim inf
r→+∞

T (r , f )

log r
= +∞.
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Nevanlinna Theory I
• Key inequality I: Given a1, a2 ∈ C,

T (r , f ) < N(r , f ) + N(r , a1) + N(r , a2)− N1(r , f ) (3)

+ O
(
r logT (r , f )

)
, r →∞ (6∈ E )

where

N1(r , f ) = N(r , 1/f ′) + 2N(r , f )− N(r , f ′).

• z0 is a pole of f :

contrib. of N(r , f )− N1(r) = N(r , f )− 2N(r , f ) + N(r , f ′)

= −N(r , f ) + N(r , f ′)= 1;

• z0 is a aj -point (j = 1, 2) of f :

contrib. of N(r , aj)− N1(r) = N(r , aj)− N(r , 1/f ′)

= N(r , aj)− N(r , 1/(f − aj)
′)= 1;

•
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Nevanlinna Theory II

• Key inequality II: Given a1, a2 ∈ C,

T (r , f ) < N(r , f ) + N(r , a1) + N(r , a2) (4)

+ O
(
r logT (r , f )

)
, r →∞ (6∈ E )

where

N(r , f ) = counts each pole with multiplicity 1,

N(r , aj) = counts each aj -point with multiplicity 1

• Multiply −1
T (r , f ) and add 3 on both sides:

(
1−N(r , f )

T (r , f )

)
+
(

1−N(r , a1)

T (r , f )

)
+
(

1−N(r , a2)

T (r , f )

)
+o
(
1
)
≤ 3−1

r →∞ ( 6∈ E )
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Nevanlinna Theory III

• (
1− N(r , f )

T (r , f )

)
+
(

1− N(r , a1)

T (r , f )

)
+
(

1− N(r , a2)

T (r , f )

)
+o
(
1
)
≤ 2

r →∞ ( 6∈ E )

• If f misses ∞, a1, a2, then the above becomes

3 + o(1) ≈
(
1− o(1)

)
+
(
1− o(1)

)
+
(
1− o(1)

)
≤ 2.

A contradiction and thus proves the Little Picard Theorem.

• Nevanlinna deficiency at a:

0 ≤ Θ(a) = 1− lim sup
r→∞

N(r , a)

T (r , f )
≤ 1
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Difference Variations

• There are many generalisations to higher dimensional spaces
Cn where Picard values are replaced by appropriate varieties.

• We re-interpret the followings:

(i) constants belong to ker
(

d
dx

)
(ii) f has three Picard values a, b, c means

f −1(a) = ∅, f −1(b) = ∅, f −1(c) = ∅.

→
(I) functions belong to ker of a difference operator

(II)
f −1(a) 6= ∅, f −1(b) 6= ∅, f −1(c) 6= ∅.

but each lies on a specific sequence.

• Halburd-Korhonen (2006), Chiang-Feng (2008, 2018),
Cheng-Chiang (2017), Chiang-Luo (2017).
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Askey-Wilson difference operator
• Let x ∈ C

x = cos θ =
1

2
(z +

1

z
) =

1

2
(e iθ + e−iθ), z = e iθ.

• The AW-divided difference operator (1985) is defined by(
Dqf

)
(x) :=

f (x̂)− f (x̌)

x̂ − x̌
, |q| 6= 1 (5)

where

x̂ :=
q1/2z + q−1/2z−1

2
, x̌ :=

q−1/2z + q1/2z−1

2
.

• In fact the denominator above can be rewritten as

(q1/2 − q−1/2)i sin θ.

• If f is differentiable at x then
(
Dqf

)
(x)→ f ′(x) as q → 1.
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Logarithmic Derivative estimates

• Let P(x) be a polynomial. Then∫ 2π

0
log+

∣∣∣P ′(re iθ)

P(re iθ)

∣∣∣ dθ → 0, r →∞.

• The crucial tool behind the Fundamental inequalities is that
the above estimate continue to hold in the following sense:

m

(
r ,

f ′(z)

f (z)

)
=

1

2π

∫ 2π

0
log+

∣∣∣ f ′(re iθ)

f (re iθ)

∣∣∣ dθ
= O

(
logT (r , f )

)
= o

(
T (r , f )

)
for r →∞ (r 6∈ E ).

• The estimate is called logarithmic derivative lemma
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q−Logarithmic Difference Lemma

• Recall that f has finite order σ if ∀ε > 0,

T (r , f ) = O(rσ+ε), r → +∞.

If f has zero-order, then we say f has finite log-order σlog

when ∀ε > 0,

T (r , f ) = O
(
(log r)σlog+ε

)
, r → +∞.

• Theorem (C. and Feng (2018) logarithmic difference lemma)

Let f (x) be a meromorphic function s.t. Dq 6≡ 0 and of log-order
σlog <∞ and where |q| 6= 1. Then we have ∀ε > 0,

m
(
r ,

(Dqf )(x)

f (x)

)
= O

(
(log r)σlog−1+ε

)
(6)

holds for all |x | = r > 0.
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m
(
r ,

(Dqf )(x)

f (x)

)
= O

(
(log r)σlog−1+ε

)
(6)

holds for all |x | = r > 0.
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AW-Nevanlinna Theory I

• Key inequality I’: Given a1, a2 ∈ C. The log-difference lemma
above leads to

T (r , f ) < N(r , f ) + N(r , a1) + N(r , a2)− NAW(r , f ) (7)

+ O
(

(log r)σlog−1+ε
)
, r →∞

where

NAW(r , f ) = N(r , 1/Dqf ) + 2N(r , f )− N(r , Dqf ).

• The main task here is to find an analogue ÑAW (r , f ) for
N(r , f ) for the AW-operator Dq.
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AW-Nevanlinna Theory II

• Our aim is to find a correct ÑAW (r , f ) so that

T (r , f ) < ÑAW (r , f ) + ÑAW (r , a1) + ÑAW (r , a2)

+ O
(

(log r)σlog−1+ε
)
, r → +∞,

where the AW-integrated counting fns are defined by

•
ÑAW (r , a) = ÑAW

(
r ,

1

f − a

)
=

∫ r

0

ñAW (t, a)

t
dt,

and

ÑAW (r , ∞) = ÑAW (r , f ) =

∫ r

0

ñAW (t, f )

t
dt.

The above are the analogues for the N(r , a) and N(r , f )
respectively.
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AW-type a−points counting functions I

We define the Askey-Wilson-type counting function of f

ñAW (r , a) = ñAW

(
r ,

1

f − a

)
=

∑
|x |<r ,

h= multiplicity of f (x)=a,
k= multiplicity of Dqf (x̂)=0

(h − k)

over all x in {|x | < r} where h = h(x) is the multiplicity of the
a−points of f (x), and k = k(x) is the multiplicity of the 0−point
of Dqf (x̂), respectively.



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel Summary

AW-type pole counting functions II

Similarly, we define

ñAW (r , ∞) = ñAW

(
r ,

1

f
= 0

)
=

∑
|x |<r ,

h= multiplicity of 1/f (x)=0,
k= multiplicity of Dq(1/f )(x̂)=0

(h − k)

over all x in {|x | < r}, where h = h(x) is the multiplicity of the
zeros of 1/f (x), and k = k(x) is the multiplicity of zeros of
Dq(1/f ) at the x̂ .
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AW-Nevanlinna Deficiency

• We have

0 ≤ ΘAW(a) = 1− lim
r→∞

ÑAW(r , A)

T (r , f )
≤ 1

We call a complex number a ∈ C an

• AW−Picard value if ñAW (r , a) = O(1) (equivalent to
ÑAW (r , a) = O(log r)),

• AW−Nevanlinna deficient value if ΘAW(a) > 0.

• If a is a AW−Picard value, then ΘAW(A) = 1, and

xn :=
1

2

(
za q

n + q−n/za
)
, n ∈ N ∪ {0}.
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ÑAW (r , a) = O(log r)),

• AW−Nevanlinna deficient value if ΘAW(a) > 0.

• If a is a AW−Picard value, then ΘAW(A) = 1, and

xn :=
1

2

(
za q

n + q−n/za
)
, n ∈ N ∪ {0}.



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel Summary

AW-Nevanlinna Deficiency

• We have

0 ≤ ΘAW(a) = 1− lim
r→∞
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ÑAW (r , a) = O(log r)),

• AW−Nevanlinna deficient value if ΘAW(a) > 0.

• If a is a AW−Picard value, then ΘAW(A) = 1, and

xn :=
1

2

(
za q

n + q−n/za
)
, n ∈ N ∪ {0}.



Motivation Nevanlinna theory AW-Nevanlinna theory Askey-Wilson Kernel Summary

AW-Picard theorem

Theorem (C. & Feng (2018))

Let f be a meromorphic function with logarithmic order σlog <∞,
and that f has three distinct AW−Picard exceptional values. Then
f is an AW−constant.

Proof.
We deduce (skipping details) that

3 = ΘAW(∞) + ΘAW(a1) + ΘAW(a2) ≤ 2.

Figure: The left-side contains the pre-images of the right-side
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Meromorphic fn with Extremal Deficiency

• Recall the weight of continuous q−ultraspherical polynomials
discovered by Rogers:

H(x) :=
(βe iθt, βe−iθt; q)∞

(e iθt, e−iθt; q)∞
=
∞∑
n=0

Cn(x ; β | q) tn, x = cos θ,

• The zero and pole sequences are

xn =
1

2

(
βt qn + q−n/(βt)

)
, xn :=

1

2

(
q1/2+n + q−1/2−n)

n ∈ N ∪ {0} respectively.

•
ΘAW(0) = 1, ΘAW(∞) = 1.

Thus ΘAW(0) + ΘAW(∞) = 2 which is the maximal
deficiency sum without the H(z) being in the kernel of Dq.
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General Main theorem

• Theorem (C. & Feng (2018))

Suppose that f (z) is a non-constant meromorphic function of
log-order σlog <∞. Let q be a complex number such that |q| 6= 1,
Dqf 6≡ 0, and let a1, a2, · · · , ap where p ≥ 2, be mutually distinct
elements in C, then we have for r <∞ and for every ε > 0

(
p−1+o(1)

)
T (r , f ) ≤ ÑAW (r , f )+

p∑
ν=1

ÑAW (r , aν)+Slog(r , ε; f )

(8)
where Slog(r , ε; f ) = O

(
(log r)σlog−1+ε

)
, ÑAW (r , f ) and

ÑAW (r , aν) are the AW− counting functions.

We deduce∑
a∈Ĉ

(
δ(a) + θAW(a)

)
≤
∑
a∈Ĉ

ΘAW(a) ≤ 2,
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Rational AW-Picard Deficienies
•

f 1
2
(x) = (e iθ, e−iθ; q)∞(q2e iθ, q2e−iθ; q3)∞, ΘAW(0) = 1/2.

•

f 2
3
(x) = (e iθ, e−iθ; q4)∞(qe iθ, qe−iθ; q4)∞

· (q2e iθ, q2e−iθ; q4)∞, ΘAW(0) = 2/3

•

f 1
n
(x) =

n−1∏
k=0

(q2ke iθ, q2ke−iθ; q2n−1)∞, ΘAW(0) = 1/n.

•

f n−1
n

(x) =
n−1∏
k=0

(qke iθ, qke−iθ; qn+1)∞, ΘAW(0) = (n − 1)/n,
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The Askey-Wilson “Constants”

• This terminology is due to Mourad Ismal.

• Let f lies in the kernel of the AW-operator. Then there exists
a non-negative integer k and complex numbers a1, · · · , ak
and b1, · · · , bk , C 6= 0 such that

f (x) = C
k∏

j=1

(aje
iθ, aje

−iθ; q)∞ (q/aje
iθ, q/aje

−iθ; q)∞
(bje iθ, bje−iθ; q)∞ (q/bje iθ, q/bje−iθ; q)∞
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Kernel identities

Theorem (C.& Feng (2018))

Given positive integer k and complex numbers
aj , Cj , j = 1, 2, · · · k, there exist complex numbers b and C such
that

k∑
j=1

Cj (aje
iz , aje

−iz ; q)∞(q/aje
iz , q/aje

−iz ; q)∞

= C (be iz , be−iz ; q)∞(q/be iz , q/be−iz ; q)∞.
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Theta functions identities

•
ϑ4(z/2) = (q2, q2)∞ (q e iz , q e−iz ; q2)∞

•
ϑ3(z/2) = (q2; q2)∞ (−q e iz , −q e−iz ; q2)∞.

•
C1 ϑ

2
4(z) + C2 ϑ

2
2(z) = C ϑ2

3(z)

•
ϑ2

4(z)ϑ2
4 + ϑ2

2(z)ϑ2
2 = ϑ2

3(z)ϑ2
3.

•
ϑ3(z + y)ϑ3(z − y)ϑ2

2 = ϑ2
3(y)ϑ2

3(z) + ϑ2
1(y)ϑ2

1(z)
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An Example
• Consider the Jacobian (elliptic) theta functions:

f (x) = Θ4(2 cos θ, q) = 2
∞∑
−∞

(−1)nqn
2

cos(2nθ)

=
(
q2, qe2iθ, qe−2iθ; q2

)
∞,

and

g(x) = Θ3(cos 2θ, q) = 2
∞∑
−∞

qn
2

cos(2nθ)

=
(
q2, −qe2iθ, −qe−2iθ; q2

)
∞.

• Then the function

F (x) =
f (x)

g(x)

has {0, ∞} to be Askey-Wilson-Picard exceptional
values, and there are no other zeros and poles of F .
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Summary

• We have reviewed on recent development on function theory
related to difference operators

• Askey-Wilson type Nevanlinna theory

• Interpreted the infinite Zeros/poles sequences that lie on
particular orbit have ΘAW(·) = 1 so they are like missing in
the Nevanlinna sense,

• Future directions may include:

1. Value distribution results vs special function identities
2. Applications to difference equations
3. Missing piece: Laurent series w. r. t. different bases?
4. Relations with interpolation theory
5. Any modular proof?
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